INFORMATION
TECHNOLOGY
MANAGEMENT

MS. URVASHI KUMARI
RESEARCH SCHOLAR
PUNE

DR. SARIKA SHARMA
PROFESSOR & DIRECTOR
JSPM'S ENIAC INSTITUTE OF
COMPUTER APPLICATIONS
WAGHOLI, PUNE

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 129

“PERFORMANCE OF DATA STRUCTURES
ON STRING SEARCH”

INTRODUCTION

text is a string or set of strings. Let ¥ be an finite set of

alphabet and both the query string and the searched text are

array of elements of 3. The X may be a usual human alphabet (

for example A-Z of English alphabet) or binary alphabet (X ={0,1}) or DNA

alphabet (X ={A,C,G,T}) in bioinformatics. It is considered that the text is

anarray T[1...n] of length n and the query string is distinct array S[1...m] of

length m and that m<=n. The problem of string matching is to find if the
string Sis found in text Tas fig 1.1

TheTextT

[T [H [[s T [T]sT JTAT Js JT JR]I [N [G]
[s [T [rR T N JG]

Thestring S

DIFFERENT APPROACH FOR STRING MATCHING
There are two different approach of string matching or string searching

1s In one approach, given a query string S & text T, the text T is
scanned to search the query string S and try to find a place where the
query string is found within a larger text. There are large no. of
algorithms existing to solve string matching problem and can be applied
on the basis of requirement of exact or approximate string matching or
single pattern and multiple pattern matching.

1.1 EXACT STRING MATCHING

In case of exact string matching Brute Force Algorithm, Searching with
automation, Rabin Karp algorithm, Knuth-Morris Pratt Algorithm etc.,
search the position in T from where the query string S is exactly found.

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 130

1.2 APPROXIMATE STRING MATCHING

In this approach, the algorithms are designed to find all the
occurrences of query string in the text whose edit distance
to the query string is at most K. The edit distance between
two strings is defined as minimum no of character
modification need to make them equal. Dynamic
programming is a method to solve approximate string
matching problem.

In this approach when the string is searched through the
whole text for solution, it is fast and efficient only in case of
short text. There is very little to improve upon the query
time as loading up the whole text into memory takes up the
maximum chunk of processing time. With the increasing size
of textual electronic data, brute force scanning is not viable
approach for string searching. There is hence a requirement
to build some kind of indexes over these massive textual
data to effectively process string queries of arbitrary
lengths.

2 The second approach of string matching or string
searching, the attention is given on creating an index for
effective searching the string T. For this purpose the text
document is first preprocessed. The preprocessor
normalizes the document. It removes all the delimiters
(spaces, commas), replaces non-alphanumeric symbols and
unifies upper and lower-case characters. It then returns the
list of single terms that occur in the document. The set of all
distinct words in the index is termed as vocabulary. These
terms in vocabulary are represented in data structure in
memory. This data structure will then provide indexing into
the text so that the string search and comparison can be
performed more efficiently.

According to The American Heritage Dictionary of English
Language , 4" edition index is defined as follows: 1.
Something that serve to guide, point out, or otherwise
facilitate reference especially : a. An alphabetized list of
names, places and subjects treated in a printed work, giving
the page or pages on which each item is mentioned b. A
thumb index. c. Any table, file or catalog. d. Computer
science A list of keywords associated with a record or
document used especially as an aid in searching for
information.

The index is of course one of the tools needed to fully solve
the user queries as the retrieval of query string location is
the very first step in query processing. Other steps involved

in query processing are information retrieval (IR), ranking
algorithms, user feedback model etc and are beyond the
scope of this survey. Here after we will concentrate on
challenging problem related with the design of efficient and
effective index data structure which a basic block for many
textual data based applications.

There are many criteria for a good index design which
includes over all speed, disk and memory space
requirements, CPU time, ease of index construction , index
maintenance in case of dynamic environment, scalability
etc. In reality no indexing scheme is best at all the above
mentioned criteria but different class of queries can be
solved by different indexing schemes, managing different
type of data and hence suitable for different type of
applications. As a result no single data structure can be
considered the best indexing scheme as each one is having
its own advantages and disadvantages and we must know the
details to make a right choice while implementing an IR
system or search engine.

Fundamental structures such as trees and hash tables are
used for managing distinct strings or words in vast range of
applications but making a right choice of structures is crucial
for the efficiency of searching the string, memory
requirement, time required to insert and search the string
keys and a choice of maintaining the strings sorted order.

In this paper we propose to evaluate the existing data
structures for string matching and searching problem.

EVALUATION OF DIFFERENT DATA STRUCTURES FOR
STRING MANAGEMENT

There is a range of data structure which can be used for
managing string for task like vocabulary accumulation for
the text documents. The performance of different data
structures depends on various features of input text
documents out of which the most important is the skew
which is defined the phenomenon of common words
dominating as a proportion of word occurrences. The other
characteristics on which the performance depends is
locality: the degree to which a recently -observed word is
likely to occur again, independent of its overall frequency.
There are characteristics like order of string, no. of distinct
string in a document also important to consider while
evaluating the candidate data structure for string
management. Hence it is important to understand the
structural properties of various data structures along with

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 131

their performance in respect to time and space and their
suitability for many common string processing application
like vocabulary accumulation or index creation.

LINKED LISTAND ARRAYS

The simplest dynamic data structures is the linked list,
developed by Newel, Shaw and Simon in 1955 and they used
this data structures as a primary data structures in their
Information processing language [Newell and Tonge , 1960] .
Linked list consists of a chain of nodes where each node
stores data item (ex-string) along with a pointer to the next
node in the chain. To store a sting we traverse the list by
comparing strings of each node to see if it matches and if
match is not found , the string is stored in a node and
attached to the head or tail or in sorted order in the linked
list. Linked list requires no average and at worst O(N)
comparison per search where N is the total number of strings
in the list. The linked list became very popular in computing
environment and was used to develop several programming
languages such as COMIT and LISP as well as File structures
for operating system. Linked list is however not suitable for
applications like vocabulary accumulation or index creation
because of lack in scalability. Ascalable data structure is one
that remains efficient to access as the number of data item
stored increases [Nikolas Askitis 2005] Strings can also be
stored using a fixed size or dynamic array , with the cost of
O(N) per operation of access, insertion or deletion. The cost
of resizing the dynamic array also need to be taken
consideration into , which involve accessing every string
which can be expensive for large N. Even for maintaining
array in sorted order high cost is involved. For example for
inserting a new string into an array , the existing strings must
be moved to maintain sort order. As array is also not scalable
like linked list , it is thus inefficient for computing
applications like vocabulary accumulation.

SEARCH TREES

A standard binary search tree (BST) has nodes having three
information, out of which one is the key and two pointers
each for left child and right child. The key feature for BST is
that all keys less than or equal to the node key are stored at
left sub-tree and otherwise at the right sub-tree. Astring key
search starts at the root, if the string key is not found in a
node, a comparison is done to find the relation between
string key and node key and is determining the branch
downwards the tree to follow. An unsuccessful search

terminates at the leaf node and then depending on the
requirement of the task the key string can be inserted in the
BST.

The performance of BST depends on the order in which the
sting keys are inserted. In worst case BST acts like a linear
linked list and its time complexity is O(N). This happens
when the input strings are in sorted order. If the input is not
ordered or skewed, the performance of BST is very good but
we cannot use BST as even if first few strings are in sorted
order the performance gets down dramatically.

AVL trees [Cormen et.el] is a variant of BST which removes
the drawback of BST by reorganizing the tree at the time of
insertion or deletion to maintain a balanced tree. Red and
Black tree [Cormen et,el. Knuth] is another variant of BST
which maintains the balance tree with some additional
information on every node . Both these variants are proven
to have a logarithmic worst case performance by removing
the chance of tree formation similar to linked list but due to
the reorganization frequently used keys are not necessarily
clustered near the root nodes. Additionally a cost of
balancing the tree incur in case of insertion of skewed data.

Splay Trees are another adaptive variation of BST have an
amortized cost of O(M log N) for a sequence of M sequence of
insertion , deletion and searches [Mehta & Sahani, Bell &
Gupta, Sleator & Tarjan]. Atree is modified at each access by
rotating the access node through rotating with respect to
parent node and grandparent node which replaces the
access node with its grandparent [Mehta & Sahani]. Splaying
leads to clustering of commonly accessed node near the root
, an advantage for skew input. Splaying can be done
recursively either bottom up or top down. Bottom up
splaying is found to be more efficient however there is high
cost involved in rotation which adds up for an expected low
cost search [Heinz & Zobel].

HASH TABLES

Hash tables are faster than any tree structure, buts it's
performance comes with a price. The search can become
sequential if the data set is large and the hash table is
comparatively small. This leads to longer search time. In
other way if the hash table is proportionately larger then
there is a problem of wastage of memory space. Standard
methods of hashing strings and maintaining a chained hash
table are not fast , however , in other work it is been shown
that with the use of bitwise hash function [Ramakrishna &

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 132

Zobel], chaining and move-to-front in chains hash tables are much faster . The disadvantage of hashing is that the strings are
randomly distributed among slots, while this problem is not significant for bulk insertion or creation of a static index, it means
that hashing is not a candidate structure for the application where the strings are required to be in sorted order. Based on the
success of copying strings to array based buckets in string sorting [Sinha et,el., Akshit & Zobel] replaced the linked list of the
chaining hash table for forming the cache conscious hash.

TRIES

ATries is a multi -way tree data structure that stores sets of strings by successively partitioning them across letters of an alphabet
[De la Briandais . E. Fredkin ,Jacquet & Szpankowski]. It was originally proposed by de la Briandais and was later called a trie by
Fredkin. Tries have two properties which cannot be implemented on BST.

i 18 The strings are grouped by shared prefix.
2. There is an absence of string comparison whichisan important feature for efficiently searching and matching strings.

Tries can be traversed speedily and offer a good worst time performance without an overhead cost of rotation or balancing [De la
Briandais, Williams J. et,el]. Due to its appropriateness trie data structure is being used for arange of applications like dictionary
management, pattern matching , natural language processing, IP routing etc,.

Although Trie is fast for string operations but it is space-intensive, which become a serious problem in practice [Knuth] and they
are restricted to applications not involving large set of strings. There are various ways to reduce the space requirement of trie and
hence make it applicable for larger volume of string sets also. Space requirement can be minimized by either changing the node
structure in such away that it requires less memory or no of nodes required can be reduced.

VARIANTS OF TRIES

The array trie s implemented in an array of pointers, one for each letter of alphabet [De la Briandais]. Astring of length kis stored
as a chain of k nodes. Storing strings in this manner form array trie that branches from a single root as shown in fig 1. The trie nodes
are accessed on the basis of the lead character which is the index in the pointer array. The lead character is then removed and the
next trie node is accessed or created in case of not found.

Figure 1. The Strings “pat”,"bake”, “plate”, and ucard” are inserted into an array trie .

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 133

The search or insertion procedure terminates when the characters of string get exhausted, in this case the last node created will
have its end-of-string flag set on searched or inserted. The access to these pointer array is fast but most of the pointers are likely
to be unused which waste the space.

THELIST TRIES

The tries proposed by [Mehta & Sahani] also called the list trie [Williams J. et,el] is the simplest approach for reducing the space
requirement of the array trie, by changing the representation of nodes to the linked list that only stores the non null pointers. In
contrast to the array trie where the space is allocated for n pointers per node where n is the size of alphabet set, the list trie
creates as many nodes as needed. The list trie is similar to array trie except the representation of node comprising of three fields
lead character, child pointer and sibling pointer. The sibling pointer points to the next character in the trie node and child pointer
points to the next trie node. In figure 2 the horizontal line indicates the sibling pointer. Last node of the child list have end of string
flag set to indicate that all characters of the strings are consumed.

MEE

Figure 2. The list trie for strings “bat”, "bake”, "plate”, ”card”. The nodes indicating the end of strings have both child and sibling
pointer having null values.

METHODS FOR IMPROVING EFFICIENCY OF DATA STRUCTURES

1 There are different works done by researcher to improve the drawback of trie data structure and make it more efficient
for string management. Many researcher have tried to conserve the space by reducing the number of required nodes and by
changing their structure. The Compact trie [Bell et,el.] reduces the no of nodes by combining chain of all node leading to a single
leaf by a single node. Patricia trie [Aoe et,el. Andersson & Nilsson] in which the nodes that have no branching are collapsed to
form a single node for saving storage space. Ternary search tree [Bently & Sedgewick, Clement,] are fast but space intensive.
Burst tries [Steffen Heinzet,el.] is a BST or other data structures that act as a container. Burst tries is currently one of the leading
string management technique.

Following Table 1.0 shows the latest work done by different researchers in the area of improving the efficiency of in-memory
string operations :

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 134

Table 1.0
S. No. Author Year of Publication Implementation Remarks
. ” Burst Trie with three components : Records | Burst Trie is highly efficient for
1 3“5?9" ZI-LeI[\zSé fch T;?n:actlgnsteor: , & Access trie Array Mapped Trie is used to | managing in-memory large string
:s]I:‘E \f“f. z'Bgzrma o) 4 implement Access Trie and BST is used to | sets . The performance depends on
UETEE=VRIAMS implement Container. the distribution of the strings.
HAT-trie was 80% faster than Burst
2 Nikolas Askitis & égiﬁ#é: IANSCIENCE HAT Trie: where the container of Burst trie | trie with a space reduction of 70%.
Ranjan Sinha CONFERENCE 2007 is replaced with cache concious hash tables | Chaining hash table is proved better
only in case of given extreme space.
Sebastian % _— - Combined the advantages of patricia
s | s and | B | e e e hang | e nd Hash table and proved a2
Christian 2011 ? table efficient algorithm for the
Scheideler : application.
Proceedings of the
Simon M. C. | 2006 International | Hashed Trie : for indexing genomic data g
5 Yuen, Fu-Lai Conference on | bases where the speed of indexing and Ihse t?::eiofs:i;a:ﬁ::r&?;‘:v:;s:b::;
Chung, Robert Bioinformatics & | retrieval can be increased by utilizing the Perfect Hashin
Wing Pong Luk. Computational overlapping characteristic in S
Biology, 2006.
Proceedings of the The author has explored various
IEEE ICDM Workshop representation of tree Trie data
on Frequent Itemset | Trie Based Frequent Item Set Mining: Used | structure and concluded that a
Mining Trie data structure for mining pattern of | carefully chosen combination of
5i Ferenc Bondon Implementations two or more event happening together | techniques can lead to 2 to 1000
(FIMI’2004). Volume | (association). fold decrease in run time without
126 of CEUR Workshop significantly increasing memory
Proceedings consumption.
Trie hashing is used on the file
TH*:Scalable Distributed Trie Hashing . The | which is sorted on some key value.
Aridj Mohamed, | 1JCSI , Vol 7, Issue 6, | hashing is done on the basis of the character | The whole file is divided into
6. Zegour D. Edine | Nov. 2010 and its position in the string in a client- | different buckets of records on
server architecture. different servers and clients can
search or update the keys .
Scalable High speed IP Routing Lookups: Trie | Mapping bit length in patricia trie
Packer Ali, ACM SIGCOMM 1997 implemented for IP routing based on hashing | to separate hash tables and using
74 Dhamin on length of string and buckets of different | binary search on hash tables to cut
lengths. down the cost of searching.

Surprisingly in scientific literature, no better worst-case bound have been obtained for algorithms and data structures
manipulating arbitrarily long strings in -memory. As far as string-matching data structures are concerned, suffix array, patricia trie
and suffix tree are particularly effective in handling unbounded length string which are small enough to fit in memory. However
they are no longer efficient when the text collection becomes large, changes over time and make considerable use of external
memory. Due to the limitation of the speed of external memory and with latest development of main memory capacity and speed,
most of the applications are using main memory to store all its required data. Most of the researchers have used this advantage of
main memory over external memory and developed alternate solutions for better in-memory string management. The table 1.1
below shows the computational criteria of recent development in string operations:

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 135

Computational Criteria Performance Comparison
S.No. I
©
a| 5| 8| 8
2 Q A ° g -
© b — © '_ T
Author sl a| 8| 8| a| &| 2 g 3| &
S| | 2| 2| 2 T <| £| 6
o3 s Q o [=] a
E g 8| &
1 HeinzS, Zobel & Y Y i } .
Williams (2002) Y X Y Y Y
2 - -
Askitis & Sinha (2007) - Y - Y Y Y v v
3 Sebastian & Christian Y Y : |
Scheideler (2011)
4 Yuen, Chung, Robert Y ; Y
(2006) Y ¥ Y Y Y
5 Ferenc Bondon Y Y Y
Aridj Mohamed, Zegour Y Y) _
D. Edine - -
7 Packer Ali, Dhamin Y Y - - - - . . % a

Table 1.1

Different area of Application

Table 1-2 shows the different areas where the efficiency of improved data structures are tested

T| e e B o =
83| S8 =zl £ 5 (8|
E|S|E(p| SE(8|5|2|E| & S5
€382 g5(=|2| £|5|s2(z|2(82
S.No. Author c =2l 22 |5[(5| 5|2 |25|8|<|TE
S EIS|E| SE(E|E|g|2|58|5|5|8s
S| c|5 |3 ns|glE| 8 |E = 2 & c
E|S |2 |? 6= | g(e| 2|8] 9 °9
s|8|? £g|0 |0 3 3 S| o
€5 5S¢ £ e
= [
1 Stefffer! HeinzS, Justin Zobel & hugh Y Y Y v v
E. Williams
2 | Nikolas Askitis & Ranjan Sinha Y Y Y Y §Y Y
3 Seba§t1an Kniesburges and Christian Y v |y v Y v
Scheideler
Simon M. C. Yuen, Fu-Lai
& Chung, Robert Wing Pong Luk. ¥ Y Y Y Y
5 | Ferenc Bondon b § Y Y
6 | Aridj Mohamed, Zegour D. Edine Y Y |'Y ¥ Y
7 | Packer Ali, Dhamin - - - lY Y Y

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 136

CONCLUSION

Asin the current information age string search is one of the most important operation in many applications, we need to improve on
the existing indexing techniques for speeding up the string searching time . Based on the literature review the researcher found
that many text based indexes were developed and various techniques like hash table and BST have given adequately good results
for the small set of strings but have their own limitations when more strings are added. Besides the large no of strings in textual
data, there is a problem caused by uneven distribution of words based on the first character of the string. For example in English
language there are many more words starting from letter 'S' than words starting from 'X'. Existing indexing techniques build their
search tree on the basis of first character or first two character of the word which require more time to search common words.

200

Words

M Frequenicy

Aduanbau4
s
o

o o

1 |

.—!‘."T.T*
123 456 7 8 9101112

Length of English words
Fig 3 : The words arranged according to their length depicis parabolic shape

Along with this we observed that the total number of words are also related with the word length as depicted in the fig 3 which is
drawn after taking 500 English words on the basis of simple random sampling.

Based on the above review the researcher concluded that the length of the string can be a criteria to segregate and minimize the
search space for searching a string and hence propose to develop a hybrid data structure model for managing strings in main
memory on the basis of first character of the string and the length of the string by utilizing the good features of different existing
data structures which will be used to design efficient algorithms for insertion, deletion and searching of a strings.

REFERENCES

i A. Andersson and S. Nilsson. Improved behavior of tries by adaptive branching. Information processing letters, 46(6), 295-300, 1993

2 Aridj Mohamed, Z.D. Edinne , TH*: Scalable Distributed Trie Hashing , 1JCSI , Vol 7, Issue 6, Nov. 109-115,2010

Bt Askitis , N. &Zobel, J.(2005), Cache Conscious Collision resolution for string hash table, in Proc. SPIRE string Processing and information retrieval Symp,

Springer-Verlag, pp. 92-104

4., Askitis, Nikolas, and Ranjan Sinha.(2007) "HAT-trie: a cache-conscious trie-based data structure for strings." Proceedings of the thirtieth Australasian
conference on Computer science-Volume 62. Australian Computer Society, Inc.,

5 Bell, T.C.,Cleary, J.G.& Witten, I.H.(1990), Text Compression , Prentice Hall

6. Bentley, J., & Sedgewick, R. (1998). Ternary tree, Dr. Dobb's.

7 D.D. Sleator and R.E.Tarjan . Self Adjusting binary Search tree . Jour of the ACM ,32,652-686, 1985

8 D.E.Knuth. The art of computer Programming vol. 3 : Sorting and Searching, Second Edition, Addison Wesley , Massachusetts, 1973

9 De laBriandais . File searching using variable length keys. In proc. Western Joint Computer Conference , pages 295-298, New york,

10. Dinesh P. Mehta and S. Sahani ,Ahand book of Data structures and Applications , Chapman& Hall Computer and Information Science Series,Washington ,D.C.
221-236

1. E. Fredkin . Trie Memory , Communications of the ACM, 3(9):490-499,1960

122 Ferenc Bondon , A Trie Based Frequent Item Set Mining, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'2004).
Volume 126

13. H.E.Williams J. Zobel and S. Heinz, Self -adjusting trees in practice for large text collections. Software-Practice and Experience, 31(10):925-939,2001

14. Jacquet and Szpankowski. Analysis of digital trie with markovian dependency. IEEE Transactions on information theory, 37(5):1470-1475, 1991

20.
21.
22.

23.

24.

25.
26.
27.

28.

ALLANA MANAGEMENT JOURNAL OF RESEARCH /JULY - DECEMBER 2015 / PAGE NO. 137

J.1. Aoe, K. Morimoto, M.Shishibori & K.H.Park. A trie Compaction algorithm for a large set of keys. |EEE transactins on knowledge and data Engineering ,
8(3):476-491, 1996

J.Belland G.K.Gupta , An evaluation of Self -adjusting binary search tree techniques, Software - Practice and Experience , 23(4):369-382,1993

J. Bently and R. Sedgewick. Fast algorithm for sorting and searching strings. In Proc. Annual ACM-SIAM Symp. On Discrete Algorithm, pages 360-369, ACM
1998.

J. Clement, P.Flajolet and B. Vallee. Dynamic source of information theory: Ageneral analysis of trie structures. Algorithmica, 29(1/2): 307-369,2001

M.V.Ramakrishna and J. Zobel. Performance in practice of String hashing functions. In R. Topor and K.Tanka , editors , Proc. Int. Conf. on Database Systems
for Advanced Applications, pages 215-223, Australlia , 1997

Newell and F.M. Tonge , An introduction to information processing language V. Communications of the ACM , 3(4); 205-211, 1960
Packer Ali, Dhamin, Scalable High speed IP Routing Lookups, ACM SIGCOMM 1997

S.Heinz and J.Zobel . Practical data structures for managing small set of strings. In M.J.Oudshoorn, editor, proc. Of the Australasion Computer Science
Conf. , p. 75-84, Melbourne Victoria, Australia, Jan 2002 Sebastian Kniesburges.

Christian Scheideler Hashed Predecessor Patricia Trie - A Data Structure for Efficient Predecessor Queries in Peer-to-Peer Systems , Distributed Computing,
Vol. 7611 (2012), pp. 435-436, Sebastian Kniesburges.

Christian Scheideler Hashed Patricia Trie: Efficient Longest Prefix Matching in Peer-to-Peer Systems , WALCOM: Algorithms and Computation , 5th
International Workshop, WALCOM 2011, 2011. pp 170-181.

Sinha, R., Ring D. & Zobel, J. , Cache efficient string sorting using copying, ACM Jour. Of Exp. Algorithmics 11 (1.2), 2006.
Simon M.C. Yuen, Fu-Lai Chung, Robert Wing Pong Luk: Fast Dictionary lookup in Genomic information retrieval ,BIOCOMP 2006 pp. 251-257.

Steffen Heinz, Justin Zobel and Hugh E. Williams, Burst Tries: A fast, Efficient Data Structure for String Keys. ACM Transactions on Information Systems,
20(2):192-223,2002.

T.H. Cormen, C.E.Leirerson and R.L. Rivest, Introduction to algorithm . The MIT press, Massachusetts, 1990.

